MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 1.6553 Steel

C67600 bronze belongs to the copper alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 33
19 to 21
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 430 to 570
710 to 800
Tensile Strength: Yield (Proof), MPa 170 to 380
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
420
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 27
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
2.7
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.6
Embodied Energy, MJ/kg 47
21
Embodied Water, L/kg 330
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
600 to 1190
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
25 to 28
Strength to Weight: Bending, points 16 to 19
23 to 24
Thermal Diffusivity, mm2/s 35
10
Thermal Shock Resistance, points 14 to 19
21 to 23

Alloy Composition

Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 57 to 60
0 to 0.3
Iron (Fe), % 0.4 to 1.3
95.6 to 98.2
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.5 to 1.5
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0

Comparable Variants