MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. EN 1.7710 Steel

C67600 bronze belongs to the copper alloys classification, while EN 1.7710 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is EN 1.7710 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 13 to 33
6.8 to 11
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 430 to 570
930 to 1070
Tensile Strength: Yield (Proof), MPa 170 to 380
800 to 1060

Thermal Properties

Latent Heat of Fusion, J/g 170
260
Maximum Temperature: Mechanical, °C 120
440
Melting Completion (Liquidus), °C 890
1470
Melting Onset (Solidus), °C 870
1430
Specific Heat Capacity, J/kg-K 380
470
Thermal Conductivity, W/m-K 110
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 27
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
3.5
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.2
Embodied Energy, MJ/kg 47
30
Embodied Water, L/kg 330
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
73 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
1680 to 2970
Stiffness to Weight: Axial, points 7.2
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 15 to 20
33 to 38
Strength to Weight: Bending, points 16 to 19
27 to 30
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 14 to 19
27 to 31

Alloy Composition

Carbon (C), % 0
0.12 to 0.18
Chromium (Cr), % 0
1.3 to 1.8
Copper (Cu), % 57 to 60
0
Iron (Fe), % 0.4 to 1.3
95.1 to 97
Lead (Pb), % 0.5 to 1.0
0
Manganese (Mn), % 0.050 to 0.5
0.6 to 1.0
Molybdenum (Mo), % 0
0.8 to 1.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.5 to 1.5
0
Vanadium (V), % 0
0.15 to 0.25
Zinc (Zn), % 35.2 to 41.6
0
Residuals, % 0 to 0.5
0

Comparable Variants