MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. CC499K Bronze

Both C67600 bronze and CC499K bronze are copper alloys. They have 65% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is CC499K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 13 to 33
13
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
41
Tensile Strength: Ultimate (UTS), MPa 430 to 570
260
Tensile Strength: Yield (Proof), MPa 170 to 380
120

Thermal Properties

Latent Heat of Fusion, J/g 170
190
Maximum Temperature: Mechanical, °C 120
170
Melting Completion (Liquidus), °C 890
1000
Melting Onset (Solidus), °C 870
920
Specific Heat Capacity, J/kg-K 380
370
Thermal Conductivity, W/m-K 110
73
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
12
Electrical Conductivity: Equal Weight (Specific), % IACS 27
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
32
Density, g/cm3 8.0
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 47
51
Embodied Water, L/kg 330
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
27
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
65
Stiffness to Weight: Axial, points 7.2
6.9
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 15 to 20
8.1
Strength to Weight: Bending, points 16 to 19
10
Thermal Diffusivity, mm2/s 35
22
Thermal Shock Resistance, points 14 to 19
9.2

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.1
Arsenic (As), % 0
0 to 0.030
Bismuth (Bi), % 0
0 to 0.020
Cadmium (Cd), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 0.020
Copper (Cu), % 57 to 60
84 to 88
Iron (Fe), % 0.4 to 1.3
0 to 0.3
Lead (Pb), % 0.5 to 1.0
0 to 3.0
Manganese (Mn), % 0.050 to 0.5
0
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.5 to 1.5
4.0 to 6.0
Zinc (Zn), % 35.2 to 41.6
4.0 to 6.0
Residuals, % 0 to 0.5
0