MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. C91000 Bronze

Both C67600 bronze and C91000 bronze are copper alloys. They have 61% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is C91000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 13 to 33
7.0
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 40
39
Tensile Strength: Ultimate (UTS), MPa 430 to 570
230
Tensile Strength: Yield (Proof), MPa 170 to 380
150

Thermal Properties

Latent Heat of Fusion, J/g 170
180
Maximum Temperature: Mechanical, °C 120
160
Melting Completion (Liquidus), °C 890
960
Melting Onset (Solidus), °C 870
820
Specific Heat Capacity, J/kg-K 380
360
Thermal Conductivity, W/m-K 110
64
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 27
9.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
37
Density, g/cm3 8.0
8.6
Embodied Carbon, kg CO2/kg material 2.8
4.1
Embodied Energy, MJ/kg 47
67
Embodied Water, L/kg 330
420

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
14
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
100
Stiffness to Weight: Axial, points 7.2
6.8
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 15 to 20
7.5
Strength to Weight: Bending, points 16 to 19
9.7
Thermal Diffusivity, mm2/s 35
20
Thermal Shock Resistance, points 14 to 19
8.8

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 57 to 60
84 to 86
Iron (Fe), % 0.4 to 1.3
0 to 0.1
Lead (Pb), % 0.5 to 1.0
0 to 0.2
Manganese (Mn), % 0.050 to 0.5
0
Nickel (Ni), % 0
0 to 0.8
Phosphorus (P), % 0
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.5 to 1.5
14 to 16
Zinc (Zn), % 35.2 to 41.6
0 to 1.5
Residuals, % 0 to 0.5
0 to 0.6