MakeItFrom.com
Menu (ESC)

C67600 Bronze vs. C95520 Bronze

Both C67600 bronze and C95520 bronze are copper alloys. They have 60% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C67600 bronze and the bottom bar is C95520 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 13 to 33
2.6
Poisson's Ratio 0.31
0.33
Shear Modulus, GPa 40
44
Tensile Strength: Ultimate (UTS), MPa 430 to 570
970
Tensile Strength: Yield (Proof), MPa 170 to 380
530

Thermal Properties

Latent Heat of Fusion, J/g 170
240
Maximum Temperature: Mechanical, °C 120
240
Melting Completion (Liquidus), °C 890
1070
Melting Onset (Solidus), °C 870
1020
Specific Heat Capacity, J/kg-K 380
450
Thermal Conductivity, W/m-K 110
40
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
11
Electrical Conductivity: Equal Weight (Specific), % IACS 27
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
29
Density, g/cm3 8.0
8.2
Embodied Carbon, kg CO2/kg material 2.8
3.6
Embodied Energy, MJ/kg 47
58
Embodied Water, L/kg 330
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 63 to 130
21
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 680
1210
Stiffness to Weight: Axial, points 7.2
8.0
Stiffness to Weight: Bending, points 20
20
Strength to Weight: Axial, points 15 to 20
33
Strength to Weight: Bending, points 16 to 19
27
Thermal Diffusivity, mm2/s 35
11
Thermal Shock Resistance, points 14 to 19
33

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
10.5 to 11.5
Chromium (Cr), % 0
0 to 0.050
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 57 to 60
74.5 to 81.3
Iron (Fe), % 0.4 to 1.3
4.0 to 5.5
Lead (Pb), % 0.5 to 1.0
0 to 0.030
Manganese (Mn), % 0.050 to 0.5
0 to 1.5
Nickel (Ni), % 0
4.2 to 6.0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0.5 to 1.5
0 to 0.25
Zinc (Zn), % 35.2 to 41.6
0 to 0.3
Residuals, % 0 to 0.5
0 to 0.5