MakeItFrom.com
Menu (ESC)

C68000 Brass vs. 5086 Aluminum

C68000 brass belongs to the copper alloys classification, while 5086 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C68000 brass and the bottom bar is 5086 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
68
Elongation at Break, % 27
1.7 to 20
Poisson's Ratio 0.3
0.33
Shear Modulus, GPa 40
26
Tensile Strength: Ultimate (UTS), MPa 390
270 to 390
Tensile Strength: Yield (Proof), MPa 140
110 to 320

Thermal Properties

Latent Heat of Fusion, J/g 170
400
Maximum Temperature: Mechanical, °C 120
190
Melting Completion (Liquidus), °C 880
640
Melting Onset (Solidus), °C 870
590
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 96
130
Thermal Expansion, µm/m-K 21
24

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.8
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 330
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
5.8 to 42
Resilience: Unit (Modulus of Resilience), kJ/m3 95
86 to 770
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
50
Strength to Weight: Axial, points 14
28 to 40
Strength to Weight: Bending, points 15
34 to 44
Thermal Diffusivity, mm2/s 31
52
Thermal Shock Resistance, points 13
12 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
93 to 96.3
Chromium (Cr), % 0
0.050 to 0.25
Copper (Cu), % 56 to 60
0 to 0.1
Iron (Fe), % 0.25 to 1.3
0 to 0.5
Lead (Pb), % 0 to 0.050
0
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 0.010 to 0.5
0.2 to 0.7
Nickel (Ni), % 0.2 to 0.8
0
Silicon (Si), % 0.040 to 0.15
0 to 0.4
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 35.6 to 42.8
0 to 0.25
Residuals, % 0 to 0.5
0 to 0.15