MakeItFrom.com
Menu (ESC)

C68000 Brass vs. S43932 Stainless Steel

C68000 brass belongs to the copper alloys classification, while S43932 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C68000 brass and the bottom bar is S43932 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 27
25
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
77
Tensile Strength: Ultimate (UTS), MPa 390
460
Tensile Strength: Yield (Proof), MPa 140
230

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Maximum Temperature: Mechanical, °C 120
890
Melting Completion (Liquidus), °C 880
1440
Melting Onset (Solidus), °C 870
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 96
23
Thermal Expansion, µm/m-K 21
10

Otherwise Unclassified Properties

Base Metal Price, % relative 23
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 48
40
Embodied Water, L/kg 330
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82
96
Resilience: Unit (Modulus of Resilience), kJ/m3 95
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 14
17
Strength to Weight: Bending, points 15
17
Thermal Diffusivity, mm2/s 31
6.3
Thermal Shock Resistance, points 13
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0 to 0.15
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
76.7 to 83
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 1.0
Nickel (Ni), % 0.2 to 0.8
0 to 0.5
Niobium (Nb), % 0
0.2 to 0.75
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.75 to 1.1
0
Titanium (Ti), % 0
0.2 to 0.75
Zinc (Zn), % 35.6 to 42.8
0
Residuals, % 0 to 0.5
0