MakeItFrom.com
Menu (ESC)

C68100 Brass vs. ACI-ASTM CB7Cu-2 Steel

C68100 brass belongs to the copper alloys classification, while ACI-ASTM CB7Cu-2 steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is ACI-ASTM CB7Cu-2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 29
5.7 to 11
Poisson's Ratio 0.3
0.28
Shear Modulus, GPa 40
75
Tensile Strength: Ultimate (UTS), MPa 380
960 to 1350
Tensile Strength: Yield (Proof), MPa 140
760 to 1180

Thermal Properties

Latent Heat of Fusion, J/g 170
280
Melting Completion (Liquidus), °C 890
1430
Melting Onset (Solidus), °C 870
1380
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 98
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 27
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 47
38
Embodied Water, L/kg 330
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
71 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 94
1510 to 3600
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 13
34 to 48
Strength to Weight: Bending, points 15
28 to 35
Thermal Diffusivity, mm2/s 32
4.6
Thermal Shock Resistance, points 13
32 to 45

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 56 to 60
2.5 to 3.2
Iron (Fe), % 0.25 to 1.3
73.6 to 79
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
0 to 0.7
Nickel (Ni), % 0
4.5 to 5.5
Niobium (Nb), % 0
0 to 0.35
Nitrogen (N), % 0
0 to 0.050
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0.040 to 0.15
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0