MakeItFrom.com
Menu (ESC)

C68100 Brass vs. SAE-AISI 1524 Steel

C68100 brass belongs to the copper alloys classification, while SAE-AISI 1524 steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68100 brass and the bottom bar is SAE-AISI 1524 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 29
14 to 22
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 40
73
Tensile Strength: Ultimate (UTS), MPa 380
570 to 650
Tensile Strength: Yield (Proof), MPa 140
320 to 540

Thermal Properties

Latent Heat of Fusion, J/g 170
250
Maximum Temperature: Mechanical, °C 120
400
Melting Completion (Liquidus), °C 890
1460
Melting Onset (Solidus), °C 870
1420
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 98
52
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 24
8.3
Electrical Conductivity: Equal Weight (Specific), % IACS 27
9.5

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 330
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 86
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 94
270 to 760
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 13
20 to 23
Strength to Weight: Bending, points 15
19 to 21
Thermal Diffusivity, mm2/s 32
14
Thermal Shock Resistance, points 13
18 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.010
0
Carbon (C), % 0
0.19 to 0.25
Copper (Cu), % 56 to 60
0
Iron (Fe), % 0.25 to 1.3
98 to 98.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.010 to 0.5
1.4 to 1.7
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0.040 to 0.15
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0.75 to 1.1
0
Zinc (Zn), % 36.4 to 43
0
Residuals, % 0 to 0.5
0