MakeItFrom.com
Menu (ESC)

C68300 Brass vs. AISI 409 Stainless Steel

C68300 brass belongs to the copper alloys classification, while AISI 409 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C68300 brass and the bottom bar is AISI 409 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 15
24
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 40
75
Shear Strength, MPa 260
270
Tensile Strength: Ultimate (UTS), MPa 430
420
Tensile Strength: Yield (Proof), MPa 260
200

Thermal Properties

Latent Heat of Fusion, J/g 180
270
Maximum Temperature: Mechanical, °C 120
710
Melting Completion (Liquidus), °C 900
1450
Melting Onset (Solidus), °C 890
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 20
11

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 46
28
Embodied Water, L/kg 340
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 56
83
Resilience: Unit (Modulus of Resilience), kJ/m3 330
100
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 15
15
Strength to Weight: Bending, points 16
16
Thermal Diffusivity, mm2/s 38
6.7
Thermal Shock Resistance, points 14
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Antimony (Sb), % 0.3 to 1.0
0
Cadmium (Cd), % 0 to 0.010
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 59 to 63
0
Iron (Fe), % 0
84.9 to 89.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0.3 to 1.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0.050 to 0.2
0
Titanium (Ti), % 0
0 to 0.75
Zinc (Zn), % 34.2 to 40.4
0
Residuals, % 0 to 0.5
0