MakeItFrom.com
Menu (ESC)

C68400 Brass vs. AISI 316L Stainless Steel

C68400 brass belongs to the copper alloys classification, while AISI 316L stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is AISI 316L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
170 to 350
Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
9.0 to 50
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
78
Shear Strength, MPa 330
370 to 690
Tensile Strength: Ultimate (UTS), MPa 540
530 to 1160
Tensile Strength: Yield (Proof), MPa 310
190 to 870

Thermal Properties

Latent Heat of Fusion, J/g 210
290
Maximum Temperature: Mechanical, °C 130
870
Melting Completion (Liquidus), °C 840
1400
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
15
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 23
19
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 2.7
3.9
Embodied Energy, MJ/kg 47
53
Embodied Water, L/kg 320
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
77 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 460
93 to 1880
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
19 to 41
Strength to Weight: Bending, points 19
18 to 31
Thermal Diffusivity, mm2/s 21
4.1
Thermal Shock Resistance, points 18
12 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
62 to 72
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.5
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0.030 to 0.3
0 to 0.045
Silicon (Si), % 1.5 to 2.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0