MakeItFrom.com
Menu (ESC)

C68400 Brass vs. AISI 409Cb Stainless Steel

C68400 brass belongs to the copper alloys classification, while AISI 409Cb stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is AISI 409Cb stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
24
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 330
270
Tensile Strength: Ultimate (UTS), MPa 540
420
Tensile Strength: Yield (Proof), MPa 310
200

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 130
710
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
25
Thermal Expansion, µm/m-K 20
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 47
31
Embodied Water, L/kg 320
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
83
Resilience: Unit (Modulus of Resilience), kJ/m3 460
100
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
15
Strength to Weight: Bending, points 19
16
Thermal Diffusivity, mm2/s 21
6.7
Thermal Shock Resistance, points 18
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
84.9 to 89.5
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0 to 0.75
Phosphorus (P), % 0.030 to 0.3
0 to 0.045
Silicon (Si), % 1.5 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0