MakeItFrom.com
Menu (ESC)

C68400 Brass vs. ASTM A369 Grade FP9

C68400 brass belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
140
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 330
300
Tensile Strength: Ultimate (UTS), MPa 540
470
Tensile Strength: Yield (Proof), MPa 310
240

Thermal Properties

Latent Heat of Fusion, J/g 210
270
Maximum Temperature: Mechanical, °C 130
600
Melting Completion (Liquidus), °C 840
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
26
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 99
10

Otherwise Unclassified Properties

Base Metal Price, % relative 23
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 47
28
Embodied Water, L/kg 320
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
80
Resilience: Unit (Modulus of Resilience), kJ/m3 460
140
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
17
Strength to Weight: Bending, points 19
17
Thermal Diffusivity, mm2/s 21
6.9
Thermal Shock Resistance, points 18
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
87.1 to 90.3
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.030
Silicon (Si), % 1.5 to 2.5
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0