MakeItFrom.com
Menu (ESC)

C68400 Brass vs. EN 1.0225 Steel

C68400 brass belongs to the copper alloys classification, while EN 1.0225 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is EN 1.0225 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
130 to 140
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
6.7 to 24
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 330
280 to 290
Tensile Strength: Ultimate (UTS), MPa 540
440 to 500
Tensile Strength: Yield (Proof), MPa 310
230 to 380

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
31 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 460
140 to 390
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
16 to 18
Strength to Weight: Bending, points 19
16 to 18
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 18
14 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.21
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
98 to 100
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.4
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.045
Silicon (Si), % 1.5 to 2.5
0 to 0.35
Sulfur (S), % 0
0 to 0.045
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0