MakeItFrom.com
Menu (ESC)

C68400 Brass vs. EN 1.4419 Stainless Steel

C68400 brass belongs to the copper alloys classification, while EN 1.4419 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is EN 1.4419 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 18
11 to 17
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 330
410 to 950
Tensile Strength: Ultimate (UTS), MPa 540
660 to 1590
Tensile Strength: Yield (Proof), MPa 310
370 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 130
790
Melting Completion (Liquidus), °C 840
1440
Melting Onset (Solidus), °C 820
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 66
30
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 23
8.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 47
30
Embodied Water, L/kg 320
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
95 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 460
350 to 3920
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
24 to 57
Strength to Weight: Bending, points 19
22 to 39
Thermal Diffusivity, mm2/s 21
8.1
Thermal Shock Resistance, points 18
23 to 55

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.36 to 0.42
Chromium (Cr), % 0
13 to 14.5
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
82 to 86
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.0
Molybdenum (Mo), % 0
0.6 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0