MakeItFrom.com
Menu (ESC)

C68400 Brass vs. EN 1.4542 Stainless Steel

C68400 brass belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
5.7 to 20
Poisson's Ratio 0.31
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 330
550 to 860
Tensile Strength: Ultimate (UTS), MPa 540
880 to 1470
Tensile Strength: Yield (Proof), MPa 310
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 210
280
Maximum Temperature: Mechanical, °C 130
860
Melting Completion (Liquidus), °C 840
1430
Melting Onset (Solidus), °C 820
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
16
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 23
13
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
39
Embodied Water, L/kg 320
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 460
880 to 4360
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 20
25
Strength to Weight: Axial, points 19
31 to 52
Strength to Weight: Bending, points 19
26 to 37
Thermal Diffusivity, mm2/s 21
4.3
Thermal Shock Resistance, points 18
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 59 to 64
3.0 to 5.0
Iron (Fe), % 0 to 1.0
69.6 to 79
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0 to 0.5
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0