MakeItFrom.com
Menu (ESC)

C68400 Brass vs. SAE-AISI 1070 Steel

C68400 brass belongs to the copper alloys classification, while SAE-AISI 1070 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is SAE-AISI 1070 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
190 to 230
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
10 to 13
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
72
Shear Strength, MPa 330
380 to 460
Tensile Strength: Ultimate (UTS), MPa 540
640 to 760
Tensile Strength: Yield (Proof), MPa 310
420 to 560

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
50
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
10
Electrical Conductivity: Equal Weight (Specific), % IACS 99
12

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 47
19
Embodied Water, L/kg 320
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
59 to 86
Resilience: Unit (Modulus of Resilience), kJ/m3 460
470 to 850
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
23 to 27
Strength to Weight: Bending, points 19
21 to 24
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 18
21 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.65 to 0.75
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
98.3 to 98.8
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0