MakeItFrom.com
Menu (ESC)

C68400 Brass vs. SAE-AISI 1117 Steel

C68400 brass belongs to the copper alloys classification, while SAE-AISI 1117 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is SAE-AISI 1117 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
140 to 150
Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 18
17 to 26
Poisson's Ratio 0.31
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 330
320 to 330
Tensile Strength: Ultimate (UTS), MPa 540
490 to 540
Tensile Strength: Yield (Proof), MPa 310
260 to 460

Thermal Properties

Latent Heat of Fusion, J/g 210
250
Maximum Temperature: Mechanical, °C 130
400
Melting Completion (Liquidus), °C 840
1460
Melting Onset (Solidus), °C 820
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 66
52
Thermal Expansion, µm/m-K 20
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 23
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 47
18
Embodied Water, L/kg 320
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
86 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 460
180 to 550
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 20
24
Strength to Weight: Axial, points 19
17 to 19
Strength to Weight: Bending, points 19
18 to 19
Thermal Diffusivity, mm2/s 21
14
Thermal Shock Resistance, points 18
15 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Carbon (C), % 0
0.14 to 0.2
Copper (Cu), % 59 to 64
0
Iron (Fe), % 0 to 1.0
98.3 to 98.8
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
1.0 to 1.3
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0 to 0.040
Silicon (Si), % 1.5 to 2.5
0
Sulfur (S), % 0
0.080 to 0.13
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Residuals, % 0 to 0.5
0