MakeItFrom.com
Menu (ESC)

C68400 Brass vs. C15000 Copper

Both C68400 brass and C15000 copper are copper alloys. They have 62% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is C15000 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 18
13 to 54
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 330
150 to 280
Tensile Strength: Ultimate (UTS), MPa 540
200 to 460
Tensile Strength: Yield (Proof), MPa 310
45 to 460

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 840
1080
Melting Onset (Solidus), °C 820
980
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 66
370
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
93
Electrical Conductivity: Equal Weight (Specific), % IACS 99
93

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
19 to 250
Resilience: Unit (Modulus of Resilience), kJ/m3 460
8.7 to 910
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
6.2 to 14
Strength to Weight: Bending, points 19
8.5 to 15
Thermal Diffusivity, mm2/s 21
110
Thermal Shock Resistance, points 18
7.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Copper (Cu), % 59 to 64
99.8 to 99.9
Iron (Fe), % 0 to 1.0
0
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0
Silicon (Si), % 1.5 to 2.5
0
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Zirconium (Zr), % 0
0.1 to 0.2
Residuals, % 0 to 0.5
0