MakeItFrom.com
Menu (ESC)

C68400 Brass vs. C15100 Copper

Both C68400 brass and C15100 copper are copper alloys. They have 62% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C68400 brass and the bottom bar is C15100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 18
2.0 to 36
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 41
43
Shear Strength, MPa 330
170 to 270
Tensile Strength: Ultimate (UTS), MPa 540
260 to 470
Tensile Strength: Yield (Proof), MPa 310
69 to 460

Thermal Properties

Latent Heat of Fusion, J/g 210
210
Maximum Temperature: Mechanical, °C 130
200
Melting Completion (Liquidus), °C 840
1100
Melting Onset (Solidus), °C 820
1030
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 66
360
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 87
95
Electrical Conductivity: Equal Weight (Specific), % IACS 99
95

Otherwise Unclassified Properties

Base Metal Price, % relative 23
31
Density, g/cm3 7.9
9.0
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 47
43
Embodied Water, L/kg 320
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 81
9.3 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 460
21 to 890
Stiffness to Weight: Axial, points 7.5
7.2
Stiffness to Weight: Bending, points 20
18
Strength to Weight: Axial, points 19
8.1 to 15
Strength to Weight: Bending, points 19
10 to 15
Thermal Diffusivity, mm2/s 21
100
Thermal Shock Resistance, points 18
9.3 to 17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.5
0
Boron (B), % 0.0010 to 0.030
0
Copper (Cu), % 59 to 64
99.8 to 99.95
Iron (Fe), % 0 to 1.0
0
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0.2 to 1.5
0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0.030 to 0.3
0
Silicon (Si), % 1.5 to 2.5
0
Tin (Sn), % 0 to 0.5
0
Zinc (Zn), % 28.6 to 39.3
0
Zirconium (Zr), % 0
0.050 to 0.15
Residuals, % 0 to 0.5
0 to 0.1