MakeItFrom.com
Menu (ESC)

C68800 Brass vs. ASTM A232 Spring Steel

C68800 brass belongs to the copper alloys classification, while ASTM A232 spring steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is ASTM A232 spring steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.0 to 36
14
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 380 to 510
1090
Tensile Strength: Ultimate (UTS), MPa 570 to 890
1790
Tensile Strength: Yield (Proof), MPa 390 to 790
1610

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 960
1460
Melting Onset (Solidus), °C 950
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
52
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 20
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.3
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.8
2.0
Embodied Energy, MJ/kg 48
28
Embodied Water, L/kg 350
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
250
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 30
64
Strength to Weight: Bending, points 19 to 25
42
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 19 to 30
53

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0.48 to 0.53
Chromium (Cr), % 0
0.8 to 1.1
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
96.8 to 97.7
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0.7 to 0.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.035
Vanadium (V), % 0
0.15 to 0.3
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0