MakeItFrom.com
Menu (ESC)

C68800 Brass vs. EN 1.4859 Stainless Steel

C68800 brass belongs to the copper alloys classification, while EN 1.4859 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is EN 1.4859 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
23
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Tensile Strength: Ultimate (UTS), MPa 570 to 890
490
Tensile Strength: Yield (Proof), MPa 390 to 790
210

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1050
Melting Completion (Liquidus), °C 960
1410
Melting Onset (Solidus), °C 950
1360
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 19
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
36
Density, g/cm3 8.2
8.0
Embodied Carbon, kg CO2/kg material 2.8
6.2
Embodied Energy, MJ/kg 48
88
Embodied Water, L/kg 350
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
91
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
110
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 30
17
Strength to Weight: Bending, points 19 to 25
17
Thermal Diffusivity, mm2/s 12
3.4
Thermal Shock Resistance, points 19 to 30
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
19 to 21
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
40.3 to 49
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
31 to 33
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0.5 to 1.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0