MakeItFrom.com
Menu (ESC)

C68800 Brass vs. Grade CW6MC Nickel

C68800 brass belongs to the copper alloys classification, while grade CW6MC nickel belongs to the nickel alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C68800 brass and the bottom bar is grade CW6MC nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.0 to 36
28
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
79
Tensile Strength: Ultimate (UTS), MPa 570 to 890
540
Tensile Strength: Yield (Proof), MPa 390 to 790
310

Thermal Properties

Latent Heat of Fusion, J/g 190
330
Maximum Temperature: Mechanical, °C 160
980
Melting Completion (Liquidus), °C 960
1480
Melting Onset (Solidus), °C 950
1430
Specific Heat Capacity, J/kg-K 400
440
Thermal Conductivity, W/m-K 40
11
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 18
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 20
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 26
80
Density, g/cm3 8.2
8.6
Embodied Carbon, kg CO2/kg material 2.8
14
Embodied Energy, MJ/kg 48
200
Embodied Water, L/kg 350
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 16 to 180
130
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 2860
240
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 19 to 30
18
Strength to Weight: Bending, points 19 to 25
17
Thermal Diffusivity, mm2/s 12
2.8
Thermal Shock Resistance, points 19 to 30
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 3.0 to 3.8
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0.25 to 0.55
0
Copper (Cu), % 70.8 to 75.5
0
Iron (Fe), % 0 to 0.2
0 to 5.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0
55.4 to 68.9
Niobium (Nb), % 0
3.2 to 4.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 21.3 to 24.1
0
Residuals, % 0 to 0.5
0