MakeItFrom.com
Menu (ESC)

C69300 Brass vs. SAE-AISI 6118 Steel

C69300 brass belongs to the copper alloys classification, while SAE-AISI 6118 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is SAE-AISI 6118 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 8.5 to 15
23
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 330 to 370
300
Tensile Strength: Ultimate (UTS), MPa 550 to 630
470
Tensile Strength: Yield (Proof), MPa 300 to 390
290

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
410
Melting Completion (Liquidus), °C 880
1460
Melting Onset (Solidus), °C 860
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 38
45
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.1
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 45
23
Embodied Water, L/kg 310
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
93
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
220
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 19 to 21
17
Strength to Weight: Bending, points 18 to 20
17
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 19 to 22
14

Alloy Composition

Carbon (C), % 0
0.16 to 0.21
Chromium (Cr), % 0
0.5 to 0.7
Copper (Cu), % 73 to 77
0
Iron (Fe), % 0 to 0.1
97.8 to 98.6
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.7
Nickel (Ni), % 0 to 0.1
0
Phosphorus (P), % 0.040 to 0.15
0 to 0.035
Silicon (Si), % 2.7 to 3.4
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.2
0
Vanadium (V), % 0
0.1 to 0.15
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0