MakeItFrom.com
Menu (ESC)

C69300 Brass vs. S32304 Stainless Steel

C69300 brass belongs to the copper alloys classification, while S32304 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69300 brass and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 8.5 to 15
28
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
79
Shear Strength, MPa 330 to 370
440
Tensile Strength: Ultimate (UTS), MPa 550 to 630
670
Tensile Strength: Yield (Proof), MPa 300 to 390
460

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 160
1050
Melting Completion (Liquidus), °C 880
1420
Melting Onset (Solidus), °C 860
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 38
15
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 26
14
Density, g/cm3 8.2
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 45
40
Embodied Water, L/kg 310
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 47 to 70
170
Resilience: Unit (Modulus of Resilience), kJ/m3 400 to 700
520
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19 to 21
24
Strength to Weight: Bending, points 18 to 20
22
Thermal Diffusivity, mm2/s 12
4.0
Thermal Shock Resistance, points 19 to 22
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21.5 to 24.5
Copper (Cu), % 73 to 77
0.050 to 0.6
Iron (Fe), % 0 to 0.1
65 to 75.4
Lead (Pb), % 0 to 0.090
0
Manganese (Mn), % 0 to 0.1
0 to 2.5
Molybdenum (Mo), % 0
0.050 to 0.6
Nickel (Ni), % 0 to 0.1
3.0 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0.040 to 0.15
0 to 0.040
Silicon (Si), % 2.7 to 3.4
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.2
0
Zinc (Zn), % 18.4 to 24.3
0
Residuals, % 0 to 0.5
0