MakeItFrom.com
Menu (ESC)

C69430 Brass vs. EN 1.4107 Stainless Steel

C69430 brass belongs to the copper alloys classification, while EN 1.4107 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69430 brass and the bottom bar is EN 1.4107 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 17
18 to 21
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 42
76
Tensile Strength: Ultimate (UTS), MPa 570
620 to 700
Tensile Strength: Yield (Proof), MPa 280
400 to 570

Thermal Properties

Latent Heat of Fusion, J/g 260
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 920
1450
Melting Onset (Solidus), °C 820
1410
Specific Heat Capacity, J/kg-K 410
480
Thermal Conductivity, W/m-K 26
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 27
7.5
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.1
Embodied Energy, MJ/kg 44
30
Embodied Water, L/kg 300
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 340
420 to 840
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 19
22 to 25
Strength to Weight: Bending, points 18
21 to 22
Thermal Diffusivity, mm2/s 7.7
7.2
Thermal Shock Resistance, points 20
22 to 25

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 80 to 83
0 to 0.3
Iron (Fe), % 0 to 0.2
83.8 to 87.2
Lead (Pb), % 0 to 0.3
0
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0.8 to 1.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 3.5 to 4.5
0 to 0.4
Sulfur (S), % 0
0 to 0.020
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 11.4 to 16.5
0
Residuals, % 0 to 0.5
0