MakeItFrom.com
Menu (ESC)

C69430 Brass vs. CC498K Bronze

Both C69430 brass and CC498K bronze are copper alloys. They have 86% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69430 brass and the bottom bar is CC498K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 17
14
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 42
41
Tensile Strength: Ultimate (UTS), MPa 570
260
Tensile Strength: Yield (Proof), MPa 280
130

Thermal Properties

Latent Heat of Fusion, J/g 260
190
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 920
1000
Melting Onset (Solidus), °C 820
920
Specific Heat Capacity, J/kg-K 410
370
Thermal Conductivity, W/m-K 26
73
Thermal Expansion, µm/m-K 18
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 6.7
10

Otherwise Unclassified Properties

Base Metal Price, % relative 27
32
Density, g/cm3 8.3
8.8
Embodied Carbon, kg CO2/kg material 2.7
3.2
Embodied Energy, MJ/kg 44
52
Embodied Water, L/kg 300
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
30
Resilience: Unit (Modulus of Resilience), kJ/m3 340
72
Stiffness to Weight: Axial, points 7.4
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 19
8.1
Strength to Weight: Bending, points 18
10
Thermal Diffusivity, mm2/s 7.7
22
Thermal Shock Resistance, points 20
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.25
Arsenic (As), % 0.030 to 0.060
0
Copper (Cu), % 80 to 83
85 to 90
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0 to 0.3
1.0 to 2.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 3.5 to 4.5
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 11.4 to 16.5
3.0 to 5.0
Residuals, % 0 to 0.5
0