MakeItFrom.com
Menu (ESC)

C69700 Brass vs. AISI W2 Steel

C69700 brass belongs to the copper alloys classification, while AISI W2 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is AISI W2 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
72
Tensile Strength: Ultimate (UTS), MPa 470
580 to 2400

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 880
1410
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 43
45
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 26
2.3
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 44
29
Embodied Water, L/kg 310
48

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
21 to 86
Strength to Weight: Bending, points 16
20 to 51
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 16
19 to 80

Alloy Composition

Carbon (C), % 0
0.85 to 1.5
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 75 to 80
0 to 0.2
Iron (Fe), % 0 to 0.2
96.2 to 98.6
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.35 to 0.74
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.5 to 3.5
0.1 to 0.4
Sulfur (S), % 0
0 to 0.025
Tungsten (W), % 0
0 to 0.15
Vanadium (V), % 0
0.15 to 0.35
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0