MakeItFrom.com
Menu (ESC)

C69700 Brass vs. Grade 3 Titanium

C69700 brass belongs to the copper alloys classification, while grade 3 titanium belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is grade 3 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
21
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
39
Shear Strength, MPa 300
320
Tensile Strength: Ultimate (UTS), MPa 470
510
Tensile Strength: Yield (Proof), MPa 230
440

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 160
320
Melting Completion (Liquidus), °C 930
1660
Melting Onset (Solidus), °C 880
1610
Specific Heat Capacity, J/kg-K 400
540
Thermal Conductivity, W/m-K 43
21
Thermal Expansion, µm/m-K 19
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
37
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 44
510
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
100
Resilience: Unit (Modulus of Resilience), kJ/m3 250
910
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16
32
Strength to Weight: Bending, points 16
32
Thermal Diffusivity, mm2/s 13
8.6
Thermal Shock Resistance, points 16
37

Alloy Composition

Carbon (C), % 0
0 to 0.080
Copper (Cu), % 75 to 80
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.35
Silicon (Si), % 2.5 to 3.5
0
Titanium (Ti), % 0
98.8 to 100
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0
0 to 0.4