MakeItFrom.com
Menu (ESC)

C69700 Brass vs. SAE-AISI H26 Steel

C69700 brass belongs to the copper alloys classification, while SAE-AISI H26 steel belongs to the iron alloys. There are 21 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is SAE-AISI H26 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
80
Tensile Strength: Ultimate (UTS), MPa 470
720 to 2100

Thermal Properties

Latent Heat of Fusion, J/g 240
240
Melting Completion (Liquidus), °C 930
1810
Melting Onset (Solidus), °C 880
1760
Specific Heat Capacity, J/kg-K 400
410
Thermal Conductivity, W/m-K 43
22
Thermal Expansion, µm/m-K 19
12

Otherwise Unclassified Properties

Base Metal Price, % relative 26
45
Density, g/cm3 8.3
9.3
Embodied Carbon, kg CO2/kg material 2.7
8.1
Embodied Energy, MJ/kg 44
120
Embodied Water, L/kg 310
90

Common Calculations

Stiffness to Weight: Axial, points 7.3
12
Stiffness to Weight: Bending, points 19
21
Strength to Weight: Axial, points 16
22 to 63
Strength to Weight: Bending, points 16
19 to 39
Thermal Diffusivity, mm2/s 13
5.6
Thermal Shock Resistance, points 16
22 to 63

Alloy Composition

Carbon (C), % 0
0.45 to 0.55
Chromium (Cr), % 0
3.8 to 4.5
Copper (Cu), % 75 to 80
0 to 0.25
Iron (Fe), % 0 to 0.2
73.3 to 77.5
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.15 to 0.4
Nickel (Ni), % 0
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 2.5 to 3.5
0.15 to 0.4
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
17.3 to 19
Vanadium (V), % 0
0.75 to 1.3
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0