MakeItFrom.com
Menu (ESC)

C69700 Brass vs. S15500 Stainless Steel

C69700 brass belongs to the copper alloys classification, while S15500 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is C69700 brass and the bottom bar is S15500 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
6.8 to 16
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 300
540 to 870
Tensile Strength: Ultimate (UTS), MPa 470
890 to 1490
Tensile Strength: Yield (Proof), MPa 230
590 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
820
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 43
17
Thermal Expansion, µm/m-K 19
11

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
98 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
890 to 4460
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
32 to 53
Strength to Weight: Bending, points 16
26 to 37
Thermal Diffusivity, mm2/s 13
4.6
Thermal Shock Resistance, points 16
30 to 50

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
14 to 15.5
Copper (Cu), % 75 to 80
2.5 to 4.5
Iron (Fe), % 0 to 0.2
71.9 to 79.9
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Nickel (Ni), % 0
3.5 to 5.5
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.9 to 22
0
Residuals, % 0 to 0.5
0