MakeItFrom.com
Menu (ESC)

C69710 Brass vs. AISI 431 Stainless Steel

C69710 brass belongs to the copper alloys classification, while AISI 431 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is AISI 431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 25
15 to 17
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
77
Shear Strength, MPa 300
550 to 840
Tensile Strength: Ultimate (UTS), MPa 470
890 to 1380
Tensile Strength: Yield (Proof), MPa 230
710 to 1040

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
850
Melting Completion (Liquidus), °C 930
1510
Melting Onset (Solidus), °C 880
1450
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
26
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.2
Embodied Energy, MJ/kg 44
31
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
140 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1270 to 2770
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
32 to 50
Strength to Weight: Bending, points 16
27 to 36
Thermal Diffusivity, mm2/s 12
7.0
Thermal Shock Resistance, points 16
28 to 43

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
78.2 to 83.8
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Nickel (Ni), % 0
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0