MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.1122 Steel

C69710 brass belongs to the copper alloys classification, while EN 1.1122 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.1122 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
12 to 21
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Shear Strength, MPa 300
240 to 290
Tensile Strength: Ultimate (UTS), MPa 470
340 to 460
Tensile Strength: Yield (Proof), MPa 230
240 to 370

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 19
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.8
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.4
Embodied Energy, MJ/kg 44
18
Embodied Water, L/kg 310
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
36 to 89
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160 to 360
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
12 to 16
Strength to Weight: Bending, points 16
14 to 17
Thermal Diffusivity, mm2/s 12
14
Thermal Shock Resistance, points 16
11 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0.080 to 0.12
Copper (Cu), % 75 to 80
0 to 0.25
Iron (Fe), % 0 to 0.2
98.7 to 99.62
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.3 to 0.6
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.5 to 3.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0