MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.4542 Stainless Steel

C69710 brass belongs to the copper alloys classification, while EN 1.4542 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.4542 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
5.7 to 20
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
550 to 860
Tensile Strength: Ultimate (UTS), MPa 470
880 to 1470
Tensile Strength: Yield (Proof), MPa 230
580 to 1300

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
860
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 880
1380
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.7
Embodied Energy, MJ/kg 44
39
Embodied Water, L/kg 310
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
62 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
880 to 4360
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
31 to 52
Strength to Weight: Bending, points 16
26 to 37
Thermal Diffusivity, mm2/s 12
4.3
Thermal Shock Resistance, points 16
29 to 49

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 75 to 80
3.0 to 5.0
Iron (Fe), % 0 to 0.2
69.6 to 79
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0 to 0.45
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0