MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.4615 Stainless Steel

C69710 brass belongs to the copper alloys classification, while EN 1.4615 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.4615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
50
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
76
Shear Strength, MPa 300
360
Tensile Strength: Ultimate (UTS), MPa 470
500
Tensile Strength: Yield (Proof), MPa 230
200

Thermal Properties

Latent Heat of Fusion, J/g 240
280
Maximum Temperature: Mechanical, °C 160
840
Melting Completion (Liquidus), °C 930
1400
Melting Onset (Solidus), °C 880
1360
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
15
Thermal Expansion, µm/m-K 19
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.8
Embodied Energy, MJ/kg 44
40
Embodied Water, L/kg 310
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
200
Resilience: Unit (Modulus of Resilience), kJ/m3 250
99
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 12
4.1
Thermal Shock Resistance, points 16
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
14 to 16
Copper (Cu), % 75 to 80
2.0 to 4.0
Iron (Fe), % 0 to 0.2
63.1 to 72.5
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 0.8
Nickel (Ni), % 0
4.5 to 6.0
Nitrogen (N), % 0
0.020 to 0.060
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0