MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.4724 Stainless Steel

C69710 brass belongs to the copper alloys classification, while EN 1.4724 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.4724 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 25
16
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 41
75
Shear Strength, MPa 300
340
Tensile Strength: Ultimate (UTS), MPa 470
550
Tensile Strength: Yield (Proof), MPa 230
280

Thermal Properties

Latent Heat of Fusion, J/g 240
290
Maximum Temperature: Mechanical, °C 160
850
Melting Completion (Liquidus), °C 930
1430
Melting Onset (Solidus), °C 880
1390
Specific Heat Capacity, J/kg-K 400
490
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
7.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 44
28
Embodied Water, L/kg 310
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
73
Resilience: Unit (Modulus of Resilience), kJ/m3 250
210
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 16
19
Thermal Diffusivity, mm2/s 12
5.6
Thermal Shock Resistance, points 16
19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.7 to 1.2
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
82.2 to 86.6
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 2.5 to 3.5
0.7 to 1.4
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0