MakeItFrom.com
Menu (ESC)

C69710 Brass vs. EN 1.6563 Steel

C69710 brass belongs to the copper alloys classification, while EN 1.6563 steel belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is EN 1.6563 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 41
73
Tensile Strength: Ultimate (UTS), MPa 470
620 to 1850

Thermal Properties

Latent Heat of Fusion, J/g 240
250
Maximum Temperature: Mechanical, °C 160
420
Melting Completion (Liquidus), °C 930
1460
Melting Onset (Solidus), °C 880
1420
Specific Heat Capacity, J/kg-K 400
470
Thermal Conductivity, W/m-K 40
45
Thermal Expansion, µm/m-K 19
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 26
3.6
Density, g/cm3 8.3
7.9
Embodied Carbon, kg CO2/kg material 2.7
1.7
Embodied Energy, MJ/kg 44
22
Embodied Water, L/kg 310
54

Common Calculations

Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16
22 to 65
Strength to Weight: Bending, points 16
21 to 43
Thermal Diffusivity, mm2/s 12
12
Thermal Shock Resistance, points 16
18 to 54

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0.38 to 0.44
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 75 to 80
0 to 0.25
Iron (Fe), % 0 to 0.2
94.9 to 96.5
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0.6 to 0.9
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 2.5 to 3.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0