MakeItFrom.com
Menu (ESC)

C69710 Brass vs. Grade 18 Titanium

C69710 brass belongs to the copper alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
11 to 17
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
40
Shear Strength, MPa 300
420 to 590
Tensile Strength: Ultimate (UTS), MPa 470
690 to 980
Tensile Strength: Yield (Proof), MPa 230
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 240
410
Maximum Temperature: Mechanical, °C 160
330
Melting Completion (Liquidus), °C 930
1640
Melting Onset (Solidus), °C 880
1590
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 40
8.3
Thermal Expansion, µm/m-K 19
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.7

Otherwise Unclassified Properties

Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 2.7
41
Embodied Energy, MJ/kg 44
670
Embodied Water, L/kg 310
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1380 to 3110
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16
43 to 61
Strength to Weight: Bending, points 16
39 to 49
Thermal Diffusivity, mm2/s 12
3.4
Thermal Shock Resistance, points 16
47 to 67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
2.5 to 3.5
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 75 to 80
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.25
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Silicon (Si), % 2.5 to 3.5
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0 to 0.4