MakeItFrom.com
Menu (ESC)

C69710 Brass vs. Grade 37 Titanium

C69710 brass belongs to the copper alloys classification, while grade 37 titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is grade 37 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 25
22
Poisson's Ratio 0.32
0.32
Shear Modulus, GPa 41
40
Shear Strength, MPa 300
240
Tensile Strength: Ultimate (UTS), MPa 470
390
Tensile Strength: Yield (Proof), MPa 230
250

Thermal Properties

Latent Heat of Fusion, J/g 240
420
Maximum Temperature: Mechanical, °C 160
310
Melting Completion (Liquidus), °C 930
1650
Melting Onset (Solidus), °C 880
1600
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 40
21
Thermal Expansion, µm/m-K 19
8.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
6.8

Otherwise Unclassified Properties

Base Metal Price, % relative 26
36
Density, g/cm3 8.3
4.5
Embodied Carbon, kg CO2/kg material 2.7
31
Embodied Energy, MJ/kg 44
500
Embodied Water, L/kg 310
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
76
Resilience: Unit (Modulus of Resilience), kJ/m3 250
280
Stiffness to Weight: Axial, points 7.3
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 16
24
Strength to Weight: Bending, points 16
26
Thermal Diffusivity, mm2/s 12
8.4
Thermal Shock Resistance, points 16
29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
1.0 to 2.0
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 75 to 80
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0 to 0.3
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Silicon (Si), % 2.5 to 3.5
0
Titanium (Ti), % 0
96.9 to 99
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0 to 0.4