MakeItFrom.com
Menu (ESC)

C69710 Brass vs. C17500 Copper

Both C69710 brass and C17500 copper are copper alloys. They have 78% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is C17500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 25
6.0 to 30
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 41
45
Shear Strength, MPa 300
200 to 520
Tensile Strength: Ultimate (UTS), MPa 470
310 to 860
Tensile Strength: Yield (Proof), MPa 230
170 to 760

Thermal Properties

Latent Heat of Fusion, J/g 240
220
Maximum Temperature: Mechanical, °C 160
220
Melting Completion (Liquidus), °C 930
1060
Melting Onset (Solidus), °C 880
1020
Specific Heat Capacity, J/kg-K 400
390
Thermal Conductivity, W/m-K 40
200
Thermal Expansion, µm/m-K 19
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
24 to 53
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
24 to 54

Otherwise Unclassified Properties

Base Metal Price, % relative 26
60
Density, g/cm3 8.3
8.9
Embodied Carbon, kg CO2/kg material 2.7
4.7
Embodied Energy, MJ/kg 44
73
Embodied Water, L/kg 310
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
120 to 2390
Stiffness to Weight: Axial, points 7.3
7.5
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16
9.7 to 27
Strength to Weight: Bending, points 16
11 to 23
Thermal Diffusivity, mm2/s 12
59
Thermal Shock Resistance, points 16
11 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.2
Arsenic (As), % 0.030 to 0.060
0
Beryllium (Be), % 0
0.4 to 0.7
Cobalt (Co), % 0
2.4 to 2.7
Copper (Cu), % 75 to 80
95.6 to 97.2
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0
Silicon (Si), % 2.5 to 3.5
0 to 0.2
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0 to 0.5