MakeItFrom.com
Menu (ESC)

C69710 Brass vs. S32803 Stainless Steel

C69710 brass belongs to the copper alloys classification, while S32803 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C69710 brass and the bottom bar is S32803 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 25
18
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 41
81
Shear Strength, MPa 300
420
Tensile Strength: Ultimate (UTS), MPa 470
680
Tensile Strength: Yield (Proof), MPa 230
560

Thermal Properties

Latent Heat of Fusion, J/g 240
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 930
1450
Melting Onset (Solidus), °C 880
1400
Specific Heat Capacity, J/kg-K 400
480
Thermal Conductivity, W/m-K 40
16
Thermal Expansion, µm/m-K 19
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.7
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 26
19
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.7
Embodied Energy, MJ/kg 44
53
Embodied Water, L/kg 310
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
760
Stiffness to Weight: Axial, points 7.3
15
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16
25
Strength to Weight: Bending, points 16
22
Thermal Diffusivity, mm2/s 12
4.4
Thermal Shock Resistance, points 16
22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Arsenic (As), % 0.030 to 0.060
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
28 to 29
Copper (Cu), % 75 to 80
0
Iron (Fe), % 0 to 0.2
62.9 to 67.1
Lead (Pb), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.4
0 to 0.5
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0
3.0 to 4.0
Niobium (Nb), % 0
0.15 to 0.5
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 2.5 to 3.5
0 to 0.55
Sulfur (S), % 0
0 to 0.0035
Zinc (Zn), % 13.8 to 22
0
Residuals, % 0 to 0.5
0