MakeItFrom.com
Menu (ESC)

C70260 Copper vs. ASTM A369 Grade FP9

C70260 copper belongs to the copper alloys classification, while ASTM A369 grade FP9 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70260 copper and the bottom bar is ASTM A369 grade FP9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 9.5 to 19
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
75
Shear Strength, MPa 320 to 450
300
Tensile Strength: Ultimate (UTS), MPa 520 to 760
470
Tensile Strength: Yield (Proof), MPa 410 to 650
240

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 200
600
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1040
1410
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 160
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 50
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 40 to 51
10

Otherwise Unclassified Properties

Base Metal Price, % relative 31
6.5
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 2.7
2.0
Embodied Energy, MJ/kg 43
28
Embodied Water, L/kg 310
87

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 46 to 140
80
Resilience: Unit (Modulus of Resilience), kJ/m3 710 to 1810
140
Stiffness to Weight: Axial, points 7.3
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 16 to 24
17
Strength to Weight: Bending, points 16 to 21
17
Thermal Diffusivity, mm2/s 45
6.9
Thermal Shock Resistance, points 18 to 27
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
8.0 to 10
Copper (Cu), % 95.8 to 98.8
0
Iron (Fe), % 0
87.1 to 90.3
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.0 to 3.0
0
Phosphorus (P), % 0 to 0.010
0 to 0.030
Silicon (Si), % 0.2 to 0.7
0.5 to 1.0
Sulfur (S), % 0
0 to 0.030
Residuals, % 0 to 0.5
0