MakeItFrom.com
Menu (ESC)

C70400 Copper-nickel vs. EN 1.4462 Stainless Steel

C70400 copper-nickel belongs to the copper alloys classification, while EN 1.4462 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C70400 copper-nickel and the bottom bar is EN 1.4462 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 45
80
Tensile Strength: Ultimate (UTS), MPa 300 to 310
780
Tensile Strength: Yield (Proof), MPa 95 to 230
520

Thermal Properties

Latent Heat of Fusion, J/g 210
300
Maximum Temperature: Mechanical, °C 210
1060
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 1060
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 64
15
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 14
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 32
17
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 47
49
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Unit (Modulus of Resilience), kJ/m3 38 to 220
670
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.3 to 9.8
28
Strength to Weight: Bending, points 11 to 12
24
Thermal Diffusivity, mm2/s 18
4.0
Thermal Shock Resistance, points 10 to 11
21

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21 to 23
Copper (Cu), % 89.8 to 93.6
0
Iron (Fe), % 1.3 to 1.7
63.7 to 71.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0.3 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 4.8 to 6.2
4.5 to 6.5
Nitrogen (N), % 0
0.1 to 0.22
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0