MakeItFrom.com
Menu (ESC)

C70600 Copper-nickel vs. N07752 Nickel

C70600 copper-nickel belongs to the copper alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C70600 copper-nickel and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
190
Elongation at Break, % 3.0 to 34
22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 46
73
Shear Strength, MPa 190 to 330
710
Tensile Strength: Ultimate (UTS), MPa 290 to 570
1120
Tensile Strength: Yield (Proof), MPa 63 to 270
740

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 220
960
Melting Completion (Liquidus), °C 1150
1380
Melting Onset (Solidus), °C 1100
1330
Specific Heat Capacity, J/kg-K 390
460
Thermal Conductivity, W/m-K 44
13
Thermal Expansion, µm/m-K 17
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 33
60
Density, g/cm3 8.9
8.4
Embodied Carbon, kg CO2/kg material 3.4
10
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 300
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.5 to 160
220
Resilience: Unit (Modulus of Resilience), kJ/m3 16 to 290
1450
Stiffness to Weight: Axial, points 7.7
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 9.1 to 18
37
Strength to Weight: Bending, points 11 to 17
29
Thermal Diffusivity, mm2/s 13
3.2
Thermal Shock Resistance, points 9.8 to 19
34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 84.7 to 90
0 to 0.5
Iron (Fe), % 1.0 to 1.8
5.0 to 9.0
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 9.0 to 11
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0 to 1.0
0 to 0.050
Residuals, % 0 to 0.5
0