MakeItFrom.com
Menu (ESC)

C70600 Copper-nickel vs. S35000 Stainless Steel

C70600 copper-nickel belongs to the copper alloys classification, while S35000 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C70600 copper-nickel and the bottom bar is S35000 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 3.0 to 34
2.3 to 14
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
78
Shear Strength, MPa 190 to 330
740 to 950
Tensile Strength: Ultimate (UTS), MPa 290 to 570
1300 to 1570
Tensile Strength: Yield (Proof), MPa 63 to 270
660 to 1160

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
900
Melting Completion (Liquidus), °C 1150
1460
Melting Onset (Solidus), °C 1100
1410
Specific Heat Capacity, J/kg-K 390
470
Thermal Conductivity, W/m-K 44
16
Thermal Expansion, µm/m-K 17
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.8
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 33
14
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.2
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.5 to 160
28 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 16 to 290
1070 to 3360
Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 9.1 to 18
46 to 56
Strength to Weight: Bending, points 11 to 17
34 to 38
Thermal Diffusivity, mm2/s 13
4.4
Thermal Shock Resistance, points 9.8 to 19
42 to 51

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.070 to 0.11
Chromium (Cr), % 0
16 to 17
Copper (Cu), % 84.7 to 90
0
Iron (Fe), % 1.0 to 1.8
72.7 to 76.9
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0 to 1.0
0.5 to 1.3
Molybdenum (Mo), % 0
2.5 to 3.2
Nickel (Ni), % 9.0 to 11
4.0 to 5.0
Nitrogen (N), % 0
0.070 to 0.13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0

Comparable Variants