MakeItFrom.com
Menu (ESC)

C70620 Copper-nickel vs. EN AC-51100 Aluminum

C70620 copper-nickel belongs to the copper alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 22 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70620 copper-nickel and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
68
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 46
26
Tensile Strength: Ultimate (UTS), MPa 300 to 570
160

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 220
170
Melting Completion (Liquidus), °C 1120
640
Melting Onset (Solidus), °C 1060
620
Specific Heat Capacity, J/kg-K 390
900
Thermal Conductivity, W/m-K 49
130
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 33
9.5
Density, g/cm3 8.9
2.7
Embodied Carbon, kg CO2/kg material 3.4
8.7
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 300
1180

Common Calculations

Stiffness to Weight: Axial, points 7.7
14
Stiffness to Weight: Bending, points 19
51
Strength to Weight: Axial, points 9.3 to 18
17
Strength to Weight: Bending, points 11 to 17
25
Thermal Diffusivity, mm2/s 14
53
Thermal Shock Resistance, points 10 to 20
7.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0 to 0.050
0
Copper (Cu), % 86.5 to 90
0 to 0.050
Iron (Fe), % 1.0 to 1.8
0 to 0.55
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 0 to 1.0
0 to 0.45
Nickel (Ni), % 9.0 to 11
0
Phosphorus (P), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.55
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.1
Residuals, % 0 to 0.5
0 to 0.15