MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. ACI-ASTM CG12 Steel

C70700 copper-nickel belongs to the copper alloys classification, while ACI-ASTM CG12 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is ACI-ASTM CG12 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
160
Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 39
40
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
78
Tensile Strength: Ultimate (UTS), MPa 320
550
Tensile Strength: Yield (Proof), MPa 110
220

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
1040
Melting Completion (Liquidus), °C 1120
1410
Melting Onset (Solidus), °C 1060
1370
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 34
18
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
3.3
Embodied Energy, MJ/kg 52
48
Embodied Water, L/kg 300
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
180
Resilience: Unit (Modulus of Resilience), kJ/m3 51
120
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
20
Strength to Weight: Bending, points 12
19
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 12
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
20 to 23
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
60.3 to 70
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 9.5 to 10.5
10 to 13
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Residuals, % 0 to 0.5
0