MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. AWS ERTi-5

C70700 copper-nickel belongs to the copper alloys classification, while AWS ERTi-5 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is AWS ERTi-5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 39
10
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 320
900
Tensile Strength: Yield (Proof), MPa 110
830

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 220
340
Melting Completion (Liquidus), °C 1120
1610
Melting Onset (Solidus), °C 1060
1560
Specific Heat Capacity, J/kg-K 390
560
Thermal Conductivity, W/m-K 59
7.1
Thermal Expansion, µm/m-K 16
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 34
36
Density, g/cm3 8.9
4.4
Embodied Carbon, kg CO2/kg material 3.4
38
Embodied Energy, MJ/kg 52
610
Embodied Water, L/kg 300
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
87
Resilience: Unit (Modulus of Resilience), kJ/m3 51
3250
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 10
56
Strength to Weight: Bending, points 12
46
Thermal Diffusivity, mm2/s 17
2.9
Thermal Shock Resistance, points 12
63

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 88.5 to 90.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.22
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 9.5 to 10.5
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.12 to 0.2
Titanium (Ti), % 0
88.2 to 90.9
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0 to 0.5
0