MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. EN 1.4418 Stainless Steel

C70700 copper-nickel belongs to the copper alloys classification, while EN 1.4418 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is EN 1.4418 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 120
200
Elongation at Break, % 39
16 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 46
77
Shear Strength, MPa 220
530 to 620
Tensile Strength: Ultimate (UTS), MPa 320
860 to 1000
Tensile Strength: Yield (Proof), MPa 110
540 to 790

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1120
1450
Melting Onset (Solidus), °C 1060
1400
Specific Heat Capacity, J/kg-K 390
480
Thermal Conductivity, W/m-K 59
15
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 12
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
13
Density, g/cm3 8.9
7.8
Embodied Carbon, kg CO2/kg material 3.4
2.8
Embodied Energy, MJ/kg 52
39
Embodied Water, L/kg 300
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
130 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 51
730 to 1590
Stiffness to Weight: Axial, points 7.6
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 10
31 to 36
Strength to Weight: Bending, points 12
26 to 28
Thermal Diffusivity, mm2/s 17
4.0
Thermal Shock Resistance, points 12
31 to 36

Alloy Composition

Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 88.5 to 90.5
0
Iron (Fe), % 0 to 0.050
73.2 to 80.2
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0.8 to 1.5
Nickel (Ni), % 9.5 to 10.5
4.0 to 6.0
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0