MakeItFrom.com
Menu (ESC)

C70700 Copper-nickel vs. Grade Ti-Pd17 Titanium

C70700 copper-nickel belongs to the copper alloys classification, while grade Ti-Pd17 titanium belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C70700 copper-nickel and the bottom bar is grade Ti-Pd17 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 73
200
Elastic (Young's, Tensile) Modulus, GPa 120
110
Elongation at Break, % 39
22
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 46
40
Tensile Strength: Ultimate (UTS), MPa 320
270
Tensile Strength: Yield (Proof), MPa 110
190

Thermal Properties

Latent Heat of Fusion, J/g 220
420
Maximum Temperature: Mechanical, °C 220
320
Melting Completion (Liquidus), °C 1120
1660
Melting Onset (Solidus), °C 1060
1610
Specific Heat Capacity, J/kg-K 390
540
Thermal Conductivity, W/m-K 59
21
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 12
7.1

Otherwise Unclassified Properties

Density, g/cm3 8.9
4.5
Embodied Carbon, kg CO2/kg material 3.4
36
Embodied Energy, MJ/kg 52
600
Embodied Water, L/kg 300
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
55
Resilience: Unit (Modulus of Resilience), kJ/m3 51
180
Stiffness to Weight: Axial, points 7.6
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 10
17
Strength to Weight: Bending, points 12
21
Thermal Diffusivity, mm2/s 17
8.8
Thermal Shock Resistance, points 12
21

Alloy Composition

Carbon (C), % 0
0 to 0.1
Copper (Cu), % 88.5 to 90.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.050
0 to 0.2
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 9.5 to 10.5
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.040 to 0.080
Titanium (Ti), % 0
98.9 to 99.96
Residuals, % 0
0 to 0.4